Changes

Jump to: navigation, search

Virtual reality

16,662 bytes added, 22:24, 18 October 2017
no edit summary
{{TOCRIGHT}}==Introduction=='''Virtual Reality''' or '''VR''' is a computer-simulated artificial world multisensory 3D environment that can mimic the physical features properties and imagery of the environments physical world, be completely based in real life fantasy, or a mix of both. The system uses position-tracking and in fantasyresponds to the user’s inputs. In VR, all of our the senses are temporarily fooled, temporarily, into believing that this the artificial environment is real. The goal of a true VR experience is to create [[presence]], - the feeling of physically being somewhere else, of being in another reality<ref name=”0”> Bierbaum, A.D. (2000). VR Juggler: A Virtual Platform for Virtual Reality Application Development. Masters of Science Thesis, Iowa State University, Iowa</ref>.
Virtual Reality is an interactive and immersive medium that can be utilized used to create unique experiences that are unattainable elsewhere. VR has the power to transform [[games]], [[films]] and other forms of media. Some enthusiasts call VR the "ultimate input/output device" or the "last medium" because any subsequent medium can be created within VR, using only software<ref name=”0”></ref> <ref name=”6”></ref>.
While [[Augmented Reality]] enhances the real world with digital content, Virtual Reality completely replaces the real world with a virtual one, creating a brand new digital environment for the users to explore<ref name=”0”></ref> <ref name=”6”></ref>.
==Main characteristics== '''Interactive -''' The user’s input controls the system and guides the behavior of the VR experience, while also modifying the virtual environment. This type of interaction engages the user, connecting him to the application in a more natural way since the environment responds directly to the stimuli <ref name=”0”></ref>. '''Immersive -''' An immersive experience has to provide a sense of presence as well as a sense of engagement. Immersion can be divided into three different aspects: '''1.''' According to Bierbaum (2000), “For a VR application to be immersive, it must be perceptually immersive by providing ‘the presentation of sensory cues that convey perceptually to users that they’re surrounded by the computer-generated environment.’” Therefore, the VR must provide the user with an all-encompassing sensory input <ref name=”0”></ref>. '''2.''' The second aspect of immersion is the sense of presence. This implies that the VR experience must give the user the sense they are “in” the virtual world <ref name=”0”></ref>. '''3.''' The final aspect is engagement. It is the degree “to which the user has a sense they are deeply involved in the environment.” <ref name=”0”></ref> '''Multisensory -''' providing a virtual experience that uses multiple human sensory systems increases the level of immersion. While current VR systems cannot provide a full range of stimuli to all human senses, it is expected that in the future this problem will be solved and the VR experience will be completely or almost indistinguishable from reality. The more senses are involved in the VR experience, the higher the degree of engagement and, consequently, this results in a greater sense of presence <ref name=”0”></ref>. '''Synthetic -''' The environment is artificial, created by a computer in real-time <ref name=”0”></ref>. ==Hardware Technologies==
===Head-mounted Display===
VR is currently created by '''[[head-mounted display]]s ''' (HMDs) such as the [[Oculus Rift]]. HMDs utilize rotational [[stereoscopic displays]] and positional specialized [[lenses]] along with [[#Motion Tracking|motion tracking sensors and optical lenses hardware]] to give the illusion that the user is physically inside the virtual world.  To create the illusionof depth, a display is placed very close to the users' eyes, covering their entire field of view. Two images that are very similar but have different perspectives are channeled into each eye to create [[parallax]], the visual phenomenon where our brains perceive depth based on the difference in the apparent position of your objects. Specialized lenses are placed between the display and our eyes. The lenses allow our eyes through to focus on the images on the display, even though the display is only a series few inches in front of our faces. Without lenses, our entire VR world would become blurry because human eyes have trouble focusing on things that are very close.<ref>http://doc-ok. org/?p=1360</ref> The headset tracks the movement of your head and changes the images shown on the display based on it. This process creates the sensation that users are located within the virtual environment. Users of these devices are not only able to experience the computer-simulated environments but also interact with them. Various input methods, from the traditional game controllers and keyboards to the futuristic hand gestures and voice commands, are available or under development. ===Motion Tracking===HMD [[tracking|tracks]] the movement of your head and updates the rendered scene based on its orientation and location. This process is similar to how we look around in real life. There are 2 types of tracking: [[rotational|rotational tracking]] and [[positional tracking|positional]].  [[Rotational tracking]] tracks the 3 rotational movements: pitch, yaw, and roll. It is performed by [[IMUs]] such as [[accelerometer]]s, [[gyroscope]]s and [[magnetometer]]s.  [[Positional tracking]] tracks the 3 translational movements: forward/back, up/down and left/right. Positional tracking is usually more difficult than rotational tracking and is accomplished through different [[Positional tracking#Types|Types]] and [[Positional tracking#Systems|Systems]]. Motion tracking is not only used to track your head in HMDs but also used to track your hands and rest of your body through various [[Input Devices|input devices]]. ===Input Devices===[[Input Devices]] allow the users to influence and manipulate the virtual realm they are in. These devices include traditional input methods such as gamepad, mouse and keyboard and novel devices that track the position and orientation of your [[:Category:Hands/Fingers Tracking|hands]], [[:Category:Hands/Fingers Tracking|fingers]], [[:Category:Feet Tracking|feet]] and other [[:Category:Body Tracking|body parts]].
==Platforms==
'''[[Oculus Rift(Platform)]]'''
'''[[SteamVR]]'''
'''[[OpenVR]]'''
 
'''[[Daydream]]'''
'''[[OSVR]]'''
'''[[WebVR]]'''
 
'''[[Windows 10 VR]]'''
 
===Additional Information===
[[VR Headset Demo Locations]]
==Devices==
{{see also|Virtual Reality Devices}}
{{:Virtual Reality Devices}}
 
==Accessories==
'''[[Input Devices]]'''
==Apps==
'''[[VR Apps]]'''
 
==Developer Resources==
===Game Engines===
[[Unity]]
 
[[Unreal Engine]]
 
===WebVR===
==Use Cases==
{{:Virtual Reality Use Cases}}
==Virtual Reality Historytimeline=='''Timeline'''[[File:Stereoscopic images.png|thumb|Figure 1. Stereoscopic images (Image: www.vrs.org.uk)]][[File:Link trainer.png|thumb|Figure 2. Link Trainer (Image: www.vrs.org.uk)]][[File:Sensorama.png|thumb|Figure 3. Sensorama (Image: www.vrs.org.uk)]][[File:VR Nasa.png|thumb|Figure 4. Virtual Environment Reality workstation technology (Image: www.sciencefocus.com)]][[File:VR arcade.png|thumb|Figure 5. VR Arcade Machines (Image: www.vrs.org.uk)]] Virtual reality has a long history of development. While the main advancements happened after the introduction of electronics and computer technology, there are precursors to the ideas and implementation of VR that date as far back as the 1800s. For example, focusing solely on VR as a means of creating the illusion of being someplace else, then the earliest attempts at virtual reality could be considered the panoramic murals (or 360-degree murals). These would fill the viewer’s field of vision with the intention of making them feel a sense of presence at a certain historical event or scene <ref name=”1”> Virtual Reality Society. History of Virtual Reality. Retrieved from https://www.vrs.org.uk/virtual-reality/history.html</ref> <ref name=”2”> The Franklin Institute. History of Virtual Reality. Retrieved from https://www.fi.edu/virtual-reality/history-of-virtual-reality</ref>. What follows is a timeline of the main historical dates and events in the development of VR. ===1838 - Stereoscopic viewers and photos=== Charles Wheatstone demonstrated that the brain processes different two-dimensional images for each eye into a single three dimensional object (Figure 1). The stereoscope was invented in the same year and used twin mirrors to project a single image. When viewing two side by side stereoscopic images through a stereoscope, it gave the sense of depth and immersion <ref name=”1”></ref> <ref name=”2”></ref> <ref name=”3”> Gemsense. Virtual Reality: History, projections and developments. Retrieved from http://gemsense.cool/virtual-reality-developments/</ref>. In 1839, William Gruber also patented the View-Master stereoscope which was used for “virtual tourism” and still is produced today. The design principles of the stereoscope can still be found in the Google Cardboard and low-budget VR headsets for smartphones <ref name=”1”></ref> <ref name=”3”></ref>. It could be argued that since the creation of stereoscopic images, people have been interested in making images more three dimensional to enrich its experience <ref name=”3”></ref>. ===1929 - Link Trainer=== Edward Link creates the first commercial flight simulator - the Link Trainer (Figure 2). It was entirely electromechanical, “controlled by motors that linked to the rudder and steering column to modify the pitch and roll.” It had a small motor-driven device that simulated turbulence and other disturbances. These flight simulators were used by over 500,000 pilots during World War II for initial training and improving skills <ref name=”1”></ref> <ref name=”3”></ref>. ===1936 - Pygmalion’s Spectacles=== Science fiction writer Stanley G. Weinbaum wrote a short story - Pygmalion’s Spectacles - that had the idea of a pair of goggles that allowed the user to experience a different world through holographic recordings, smell, taste, and touch. This concept can be easily equated to the VR devices that are currently available or under development <ref name=”1”></ref> <ref name=”3”></ref> <ref name=”4”> Evenden, I. (2016). The history of virtual reality. Retrieved from http://www.sciencefocus.com/article/history-of-virtual-reality</ref>. ===1956 - The Sensorama=== Cinematographer Morton Heilig develops the Sensorama, which was patented only in 1962 and might be considered the first true VR system. It was an arcade-style cabinet that stimulated all the senses. It had a stereoscopic 3D display, stereo speakers, vibrating seat, fans, and a scent producer. It was intended to fully immerse the person in a film. Heilig created six short films for his invention titled Motorcycle, Belly Dancer, Dune Buggy, Helicopter, A date with Sabina and I’m a coca cola bottle! Heilig intended the Sensorama to be one in a line of products for the “cinema of the future”. Unable to secure financial backing, his vision never became reality <ref name=”1”></ref> <ref name=”2”></ref> <ref name=”4”></ref> <ref name=”5”> Robertson, A. and Zelenko, M. Voices from a virtual past. Retrieved from https://www.theverge.com/a/virtual-reality/oral_history</ref> <ref name=”6”> Mazuryk, T. and Gervautz, M. (1996). Virtual Reality - History, applications, technology and Future (Technical Report). Retrieved from https://www.cg.tuwien.ac.at/research/publications/1996/mazuryk-1996-VRH/TR-186-2-96-06Paper.pdf</ref>. ===1960 - First VR Head-Mounted Display=== After the Sensorama, Morton Heilig invented the first example of a virtual reality headset - the Telesphere Mask. It only worked with non-interactive films and didn’t have motion tracking. Nevertheless, the headset provided stereoscopic 3D and wide vision with stereo sound <ref name=”1”></ref> <ref name=”2”></ref>. ===1961 - First motion tracking HMD=== The true precursor of the HMDs available today was developed by two Philco Corporation engineers, Comeau and Bryan. It was called Headsight and it incorporated a video screen for each eye and a magnetic motion tracking system. This system was linked to a closed circuit camera. The device wasn’t developed for virtual reality applications. Instead, its goal was to allow immersive remote viewing of dangerous situations by the military. The head movements of the used would be replicated by a remote camera, allowing him to look around the environment. While the Headsight was a step in the evolution of the virtual reality headset, it lacked the integration of a computer and image generation <ref name=”1”></ref>. ===1965 - The Ultimate Display=== Ivan Sutherland developed the concept of the “Ultimate Display”. This device could simulate the natural world so realistically that a user could not tell the difference between actual reality and virtual reality. The concept comprised of a virtual world viewed through an HMD and had augmented 3D sound and tactile feedback; computer hardware that created the virtual environment and maintained it in real time; and interactivity between users and objects from the VR world in a realistic way. Sutherland suggested that the device would serve as a “windows into a virtual world”, and his idea would become a core blueprint for the concepts that encompass current VR <ref name=”1”></ref> <ref name=”2”></ref> <ref name=”6”></ref>. ===1968 - Sword of Damocles=== Ivan Sutherland and Bob Sproull created the Sword of Damocles, an HMD that was held by a mechanical arm mounted on a ceiling. The device was connected to a computer and displayed simple wireframe graphics to the user. The arm tracked the user’s head movements but was difficult to use. The contraption was also too heavy and bulky for comfortable use <ref name=”1”></ref> <ref name=”4”></ref> <ref name=”6”></ref>. ===1969 - Artificial Reality=== Myron Kruegere developed a series of experiences called “Artificial Reality”. He developed computer-generated environments that responded to the people in it. He created several projects such as Glowflow, Metaplay, and Psychic Space leading to the development of the Videoplace technology. This enabled communication between people at a distance in a responsive computer-generated environment <ref name=”1”></ref>. ===1975 - Videoplace=== Myron Kruegere created the Videoplace, which was the first interactive VR platform. The virtual reality surrounded the user and responded to movements and actions without the use of goggles or gloves. The Videoplace was a mix of several other artificial reality systems that he had developed <ref name=”6”></ref> <ref name=”7”> Freefly VR. Time travel through virtual reality. Retrieved from https://freeflyvr.com/time-travel-through-virtual-reality/</ref>. ===1982 - Sayre gloves=== The Sayre glove was the first wired glove. It was invented by Daniel J. Sandin and Thomas Defanti from an idea by Richard Sayre. Both scientists were from the Electronic Visualization Laboratory at the University of Illinois, Chicago. The glove used light emitters and photocells in the fingers. When flexed, the quantity of light reaching the photocell changed, translating the finger movements into electrical signals <ref name=”4”></ref>. ===1985 - NASA project=== The Virtual Environment Workstation Project at NASA’s Ames Research Center in Mountain View, California, was founded with the purpose of producing a VR system that allowed astronauts to control robots outside a space station (Figure 4). The HMD that was developed had super-wide optics (almost an 180-degree field of view) <ref name=”4”></ref>. ===1987 - The “Virtual Reality” name is coined=== Before this date, even though there had been developments in VR, there wasn’t a term to describe the field. In 1987, Jaron Lanier (founder of the Visual Programming Lab, VPL) finally coined the term “virtual reality”. Lanier, through his company, developed a range of VR gear like the Dataglove and the EyePhone headset. The company also made the first surgical simulator, the first vehicle prototyping simulator, and the first architecture simulators <ref name=”1”></ref> <ref name=”2”></ref> <ref name=”4”></ref>. ===1991 - Virtuality Group=== By this time, VR devices started to be available to the public (although owning cutting-edge VR was still out of reach). The Virtuality Group launched several arcade games and machines in which players would use a set of VR goggles (Figure 5). The machines had immersive stereoscopic 3D visuals, handheld joysticks, and some unit were networked together for multiplayer gaming. There were some discussions about bringing Virtuality to Atari’s Jaguar console, but the idea was abandoned <ref name=”1”></ref> <ref name=”4”></ref>. ===1993 - Sega’s virtual reality headset=== At the Consumer Electronics Show in 1993, Sega announced a virtual reality headset for the Sega Genesis console. The prototype had head tracking, stereo sound and LCD screens in the visor. The company intended to have a general release of the product but technical difficulties stopped that from happening and the headset would remain in the prototype phase <ref name=”1”></ref> <ref name=”4”></ref>. ===1995 - Nintendo Virtual Boy=== The Virtual Boy was a 3D gaming console, marketed as the first portable console that could display 3D graphics. It was released in Japan and North America, and it was a commercial failure for the Japanese company. Some of the reasons for the failure were the lack of color in graphics (only red and black), lack of software support, and difficulty in using the console in a comfortable position. Production of the console was halted in 1996 <ref name=”1”></ref> <ref name=”4”></ref>. ===Virtual reality in the 21st century=== After 1997, the public interest in VR saw a decrease. Nevertheless, the first fifteen years of the 21st century had several advancements in the field of virtual reality. Computer technology, including small and powerful mobile technologies, increased in power while prices were getting more accessible <ref name=”1”></ref> <ref name=”4”></ref>.The interest in VR regained momentum after Palmer Luckey created the first prototype of the Oculus Rift, in 2011, and launched a kickstarter campaign for its development in 2012. The campaign was successful, raising $2.5 million. In March 2014, Facebook bought the company Oculus VR for $2 billion dollars. After this, virtual reality blew up, with multiple companies investing in the development of their own VR systems. The rise of smartphones with high-density displays and 3D capabilities has also enabled the development of lightweight and practical VR devices <ref name=”1”></ref> <ref name=”5”></ref> <ref name=”7”></ref>. ==References==<references />
[[Category:Terms]]
15,794
edits

Navigation menu