Changes

Jump to: navigation, search

Near-eye light field display

1,177 bytes added, 13:19, 17 March 2017
no edit summary
[[File:LFS images.jpg|thumb|Figure 4. Images with front and rear focus produced by the light field stereoscope (Image: Huang et al., 2015)]]
 
[[File:Nvidia-light-field-stereoscope-schematic.jpg|thumb|Figure 5. Light Field Stereoscope schematic (Image: fudzilla.com)]]
During the 2013 SIGGRAPH (Special Interest Group on Computer Graphics and Interactive Techniques) conference, NVIDIA showed the product of its research sector: a near-eye light field display prototype (Figure 2). It consisted of a pair of Sony ECX332A OLED micro-displays with a pixel density of about 2100 ppi. The display panels measured 15.36 x 8.64 mm, with a resolution of 1280 x 720 through 24-bit color pixels, and were installed on a glasses-like frame with a small box of electronics on top <ref name=”5”></ref><ref name=”9”> Steele, B. (2013). NVIDIA Research's near-eye light field display prototype eyes-on (video). Retrieved from https://www.engadget.com/2013/07/24/nvidia-research-near-eye-light-field-display-prototype/</ref>.
A light field is presented to each eye, providing a more natural viewing experience than conventional NEDs. The required field of view is very small (the size of the pupil), and it produces correct or nearly-correct focus cues. These cues are important for diminishing visual discomfort and contributing to comfortable, long-term immersive experiences. The developers of the light field stereoscope have the main goal of providing a practical, inexpensive display technology that supports focus cues in a wearable form factor <ref name=”7”></ref><ref name=”8”></ref>.
 
NVIDIA showed a revision of its light field prototype during the Virtual Reality LA Expo of 2016, in Southern California. The unit was attached to a desktop PC equipped with a Maxwell-based GPU. To compute the light fields images in real-time, NVIDIA used an algorithm based on its CUDA parallel programming language for GPUs. Still in collaboration with Stanford University, the new prototype eliminates the headphone requirement with a VR headset design that does not produce motion sickness side effects. The light field stereoscope uses two layered displays with back-to-back LCD panels. These are in-between a backlight and two circular viewing lenses (Figure 5). The device creates a natural depth-of-field in each eye, combining it with a stereoscopic technique (showing images at slightly different angles in each eye) <ref name=”10”> Worrel, J. (2016). Nvidia shows off its 'Light Field' VR headset at VRLA 2016. Retrieved from http://www.fudzilla.com/news/graphics/39762-nvidia-shows-off-its-light-field-vr-headset-at-vrla-2016</ref>.
==References==
349
edits

Navigation menu